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Abstract. Meta-learning involves the construction of a classifier that
predicts the performance of another classifier. Previously proposed ap-
proaches do this by making a single prediction (such as the expected
accuracy) for a complete data set. We suggest modifying this framework
so that the meta-classifier predicts for each data point in the data set
whether a particular base-classifier will classify it correctly or not. While
this information can be converted into a standard meta-learning out-
put such as an overall accuracy estimate for the complete data set, the
approach has the added advantage of providing more fine-grained infor-
mation which promises to be useful in Multiple Classifier Selection and
Semi-Supervised Learning. This paper describes the new framework and
reports the results of an initial evaluation on a medium-sized database
of classification data sets.

1 Introduction

When faced with a classification task that we want to solve with a machine
learning (ML) method, we have a choice between many different algorithms and
implementations. While factors such as run time and memory restrictions may
influence the selection, expected classification accuracy will be of major impor-
tance. Unfortunately, predicting the latter is not trivial. An empirical approach
that has been tried in the past is meta-learning: here the algorithm selection or
accuracy prediction problem is phrased as a classification or regression task, i.e. a
meta-level learner is trained to predict the performance of a base ML algorithm.

For example, in the StatLog project [1], a decision tree was trained to assess
whether an algorithm is applicable to a data set, meaning it would achieve low
error rates or costs. In later work, Fürnkranz and Petrak [2] predict which of
a pair of algorithms is more accurate on a given task. In contrast, Bensusan
and Kalousis [3] predict classification accuracy with one regression model per
base-classifier and evaluate algorithm rankings generated from the accuracies.
More recently, the MetaL project led to the development of an online advisory
system which takes both accuracy and run time into account [4]. It constructs
a ranking of several algorithms based on their predicted accuracies and the loss
in accuracy the user is willing to trade in for a 10-times speed up.



2 Data Point Based Predictions

The input unit in standard meta-learning is the data set: one meta-feature vector
is extracted per data set, and the output is a prediction for the complete set. We
propose creating a meta-learner which makes predictions not for the data set as
a whole, but rather for each individual data point in it. More specifically, our
meta-classifier (MC) should predict for a given data point whether a particular
base-classifier (BC) will classify it correctly or not. Figure 1 illustrates how such
a system can be trained, tested and evaluated.
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Fig. 1. Data point based meta-learning for one combination of meta- and base-classifier

The meta-level training stage requires a number of labelled data sets, which
include the real base-class for each data point. Note that these sets represent
different classification problems and therefore may have different classes, num-
bers of base-features and numbers of data points. The predicted base-class for
all points in each set can be obtained by training and testing the BC in a cross-
validation setup. By comparing the predicted with the real base-level class, we
compute the true meta-level class, that is: was the BC right or wrong? This in-
formation, together with the meta-features extracted for each data point, is then
used to train the meta-classifier. Figure 1 implies that the true base-level class



is used in the meta-feature extraction, which is reasonable in all use cases where
the meta-classifier would be applied to training or validation data. However,
our framework is equally applicable without this information. The meta-level
testing stage assumes a single test data set. We extract the meta-features for
each data point in this set and feed them into the trained meta-level classifier,
which predicts for each data point whether the BC will classify it correctly or
not.
The main advantage of data point level decisions over those at the data set level is
that they are more versatile. They can provide the same information as set based
methods: individual data point predictions can be averaged to give an accuracy
estimate for the complete data set, and this can be used to construct a ranking
for a set of classifiers. However, knowing whether a BC will classify a point
correctly can also be useful in other processes. In Multiple Classifier Systems,
it has been shown that the best combination of classifiers is not necessarily
the combination of the best single classifiers, and therefore knowing which BC
achieves the highest accuracy is not always of help. Even if some classifiers
achieve higher accuracies than others, they might make different mistakes, so it
is really the complementarity of correct classifier decisions that is of interest. A
successful data point based meta-learning system could provide this information.
In fact, estimates of classifier accuracy have already been applied to Dynamic
Classifier Selection, where the BC performance on the training data has been
used to select BCs for test data points of the same data set (e.g. [5]). However,
we are not aware of any work that uses a classifier trained on other data sets
to do the selection. Whether generalising in this way leads to better selection
strategies still needs to be investigated, but the differences are also practical:
in our approach the meta-classifiers need to be trained once before they can be
applied to a number of unknown data sets; in the other case all BCs need to be
trained and evaluated (on the training data) for each unknown data set.

Another potential application of data point based meta-learning is in the
field of Semi-Supervised Learning, where the goal is to train a classifier with
very little annotated data to reliably classify a much larger set of unannotated
data. In methods such as bootstrapping we iteratively train and test the clas-
sifier, each time augmenting the training set with new, previously unlabelled,
data. At each cycle the new training data may have been labelled incorrectly,
which can completely mislead the classifier. Meta-learning can help to avoid this
situation by providing an estimate of the classification quality. Data set based
meta-learning could give an overall estimate, but data point based meta-learning
could additionally help to identify problematic data points (which may then be
omitted in the retraining step or recommended for manual annotation).

3 Experimental Evaluation

This section describes a simple implementation designed to test the feasibility
of the proposed approach and the results obtained with it on a medium-sized
data set. We used the YALE machine learning toolkit [6] for our experiments



and selected five classifiers implemented by it for both the base- and meta-
level: the decision tree algorithm C4.5 (DT), a Naive Bayes classifier (NB), a
k-Nearest-Neighbour implementation (KNN), the rule learner Ripper (RL), and
a Support Vector Machine with a radial basis function kernel (SVM). In all
experiments reported below the default settings in YALE were used. To train
and evaluate the classifiers we used 127 data sets from the Weka toolkit archive
[7], a collection of machine learning data from various other archives such as the
UCI KDD archive and the StatLib data archive. Table 1 describes the data.

min. max. mean median std. dev.
#classes 2 48 6 3 7.5
#instances 8 20,000 1,131.2 345 2,549.6
#attributes 1 7129 102.5 13 654.2

Table 1: Data set statistics

all sets train. sets test sets
DT 69,97% 69.79% 70.69%
KNN 68,33% 69.08% 68.53%
NB 66,22% 66.55% 64.07%
RL 68,63% 68.81% 67.89%
SVM 55,63% 55.84% 54.77%

Table 2: Mean accuracy of base-learners

Table 2 shows the average performance of the BCs obtained by 5-fold cross-
validation. The accuracies for the test sets serve as a majority baseline result
for our MC experiments reported below.3 For the meta-level experiments the
sets were randomly divided into 80% training data (102 sets) and 20% test
data (25 sets). We developed a small list of meta-features intended to capture
aspects of a test data point that make it hard for classifiers to classify a point
correctly, given the training data the classifier had seen. The meta-features for
each data point were therefore extracted with respect to the training set used in
its corresponding cross-validation run.

For reasons of space we do not give a complete list here, but summarise
that the 19 meta-features are either related to the problem (e.g. the number of
features), the test point (e.g. the proportion of features with undefined values),
or the training set (e.g. the proportion of training data with the same class as
the test point). Since all our meta-features require the base-level features to be
categorical, we discretised numerical low-level features before the extraction of
the meta-features4. The 25 MCs were then trained as described in section 2 and
evaluated on the 25 test data sets, resulting in 625 classification runs. Table 3
shows the mean data point prediction accuracy for each combination of MC
and BC algorithms, averaged over all test sets.

MC BC Acc. MC BC Acc. MC BC Acc. MC BC Acc. MC BC Acc. Avg.
DT DT 76.08 DT KNN 77.56 DT NB 68.93 DT RL 79.52 DT SVM 66.86 73.79

KNN DT 76.79 KNN KNN 73.25 KNN NB 75.21 KNN RL 60.38 KNN SVM 69.12 70.95
NB DT 70.51 NB KNN 60.60 NB NB 64.48 NB RL 62.66 NB SVM 81.44 67.94
RL DT 79.28 RL KNN 69.03 RL NB 69.87 RL RL 74.82 RL SVM 71.12 72.83

SVM DT 62.66 SVM KNN 69.55 SVM NB 59.00 SVM RL 93.54 SVM SVM 91.11 75.17

Average 73.06 Average 70.00 Average 67.50 Average 74.18 Average 75.93 72.14

Baseline 70.69 Baseline 68.53 Baseline 64.07 Baseline 67.89 Baseline 54.77 65.19

Table 3. Mean data point prediction accuracy in % for the 25 MC/BC combinations

3 Since all five BCs are more often correct than incorrect on training data, the majority
baseline at the meta-level is to predict that the base-learner is always correct.

4 Based on the training data, the range of attribute values was divided into a maximum
of 200 equally large intervals so that each interval contained at most 5% of the values.



We observe that in most cases (for DT and RL meta-learners in all cases),
the MCs beat the majority baseline. When taking the best MC to predict the
decisions of each BC (the bold entry in each column), the accuracy is always
higher than the baseline, and the average accuracy is as high as 83.34%. The
results show that we can predict the behaviour of each BC to a relatively high
degree even with the simple setup of this initial study.

4 Conclusions

We have presented and motivated a new meta-learning framework which predicts
the correctness of classification decisions for each test pattern. Initial experiments
with five base- and meta-classifiers show that even a simple implementation of
meta-classifiers can predict this information with a relatively high degree of
accuracy (between 75.21% and 93.54% when using the best meta-classifiers).

We now plan to continue this work on three levels. Firstly, we hope to improve
on these results with more sophisticated meta-features and the incorporation of
parameter tuning and feature selection at the meta-level. Secondly, we intend to
conduct a more thorough evaluation. The use of a greater number of classifiers
and data sets, as well as tuning and feature selection at the base-level, should lead
to results that are more representative of real classification problems. Finally,
we plan to investigate the contribution that the proposed framework can make
to tasks such as algorithm selection or ranking, and in particular to Multiple
Classifier Systems and Semi-Supervised Learning.
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